Learning deep learning (project 2, image classification)

1 min read

In this class project, I built a network to classify images in the CIFAR-10 dataset. This dataset is freely available.

The dataset contains 60K color images (32×32 pixel) in 10 classes, with 6K images per class.

Here are the classes in the dataset, as well as 10 random images from each:

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

You can imagine it’s not possible to write down all rules to classify them, so we have to write a program which can learn.

The neural network I created contains 2 hidden layers. The first one is a convolutional layer with max pooling. Then drop out 70% of the connections. The second layer is a fully connected layer with 384 neurons.

def conv_net(x, keep_prob):
    """
    Create a convolutional neural network model
    : x: Placeholder tensor that holds image data.
    : keep_prob: Placeholder tensor that hold dropout keep probability.
    : return: Tensor that represents logits
    """
    # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers
    #    Play around with different number of outputs, kernel size and stride
    # Function Definition from Above:
    #    conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)
    model = conv2d_maxpool(x, conv_num_outputs=18, conv_ksize=(4,4), conv_strides=(1,1), pool_ksize=(8,8), pool_strides=(1,1))
    model = tf.nn.dropout(model, keep_prob)

    # TODO: Apply a Flatten Layer
    # Function Definition from Above:
    #   flatten(x_tensor)
    model = flatten(model)

    # TODO: Apply 1, 2, or 3 Fully Connected Layers
    #    Play around with different number of outputs
    # Function Definition from Above:
    #   fully_conn(x_tensor, num_outputs)
    model = fully_conn(model,384)

    model = tf.nn.dropout(model, keep_prob)

    # TODO: Apply an Output Layer
    #    Set this to the number of classes
    # Function Definition from Above:
    #   output(x_tensor, num_outputs)
    model = output(model,10)

    # TODO: return output
    return model

Then I trained this network using Amazon AWS g2.2xlarge instance. This instance has GPU which is much faster for deep learning (than CPU). I did a simple experiment and find GPU is at least 3 times faster than CPU:

if all layers in gpu: 14 seconds to run 4 epochs,
if conv layer in cpu, other gpu, 36 seconds to run 4 epochs

This is apparently a very crude comparison but GPU is definitely much faster than CPU (at least the ones in AWS g2.2xlarge, cost: $0.65/hour)

Eventually I got ~70% accuracy on the test data, much better than random guess (10%). The time to train the model is ~30 minutes.

You can find my entire code at:
https://www.alivelearn.net/deeplearning/dlnd_image_classification_submission2.html



写作助手,把中式英语变成专业英文


Want to receive new post notification? 有新文章通知我

第五十一期fNIRS Journal Club通知2024/05/11, 10am 雷心博士

机器人通常以合作者的身份出现,以礼貌、鼓励、友好的方式与人类互动,但如果有一个竞争导向的机器人出现会如何?人们更喜欢与合作导向的机器人互动,还是更愿意通过竞争来激发自身动力呢?当我们与机器人合作或竞争
Wanling Zhu
13 sec read

第五十期fNIRS Journal Club视频 王一晖

Youtube: https://youtu.be/a2QlCFZUytA优酷:https://v.youku.com/v_show/id_XNjM3MjMyNjUxMg==.html 早期的 STE
Wanling Zhu
13 sec read

第五十期fNIRS Journal Club通知2024/03/30, 10am 王一晖

早期的 STEM 教育对于以后的学习至关重要。现有研究尚未就STEM教学法达成共识,学生先验知识对基于故事的STEM教学法的影响还有待探讨。来自澳门大学张娟教授团队的王一晖将会分享基于fNIRS超扫描
Wanling Zhu
9 sec read

2 Replies to “Learning deep learning (project 2, image classification)”

  1. Helpful post. Can you explain your motivation behind using standard deviation on 0.1 while initializing the weights. My network does not learn if i keep the standard deviation to 1. Only when i saw your post and fine tuned my standard deviation to 0.1, it started training. i would like to understand how did you choose the standard deviation of 0.1 🙂

  2. Can you explain how you arrived at the values below?

    model = fully_conn(model,384)
    #model = fully_conn(model,200)
    #model = fully_conn(model,20)

Leave a Reply

Your email address will not be published. Required fields are marked *