第十五期 fNIRS Journal Club 通知 2020/12/27,10am

51 sec read

胡玥

香港中文大学二年级博士生胡玥为大家介绍一篇方法学文献,即基于人工神经网络重構的多通道fNIRS信号运动伪影校正。该方法不仅对心理学,还对运动科学以及康复医学等领域的研究具有重要的参考价值,热烈欢迎大家参与讨论。

时间: 北京时间2020年12月27日周日上午10点
地点: https://zoom.com
房间号: 859 4100 6556
密码: 467563

Lee, G., Jin, S. H., & An, J. (2018). Motion artifact correction of multi-measured functional near-infrared spectroscopy signals based on signal reconstruction using an artificial neural network. Sensors, 18(9), 2957. 点击查看

该文献的PUBMED信息
PMID: 30189651 
PMCID: PMC6164948 
DOI: 10.3390/s18092957

Abstract: In this paper, a new motion artifact correction method is proposed based on multi-channel functional near-infrared spectroscopy (fNIRS) signals. Recently, wavelet transform and hemodynamic response function-based algorithms were proposed as methods of denoising and detrending fNIRS signals. However, these techniques cannot achieve impressive performance in the experimental environment with lots of movement such as gait and rehabilitation tasks because hemodynamic responses have features similar to those of motion artifacts. Moreover, it is difficult to correct motion artifacts in multi-measured fNIRS systems, which have multiple channels and different noise features in each channel. Thus, a new motion artifact correction method for multi-measured fNIRS is proposed in this study, which includes a decision algorithm to determine the most contaminated fNIRS channel based on entropy and a reconstruction algorithm to correct motion artifacts by using a wavelet-decomposed back-propagation neural network. The experimental data was achieved from six subjects and the results were analyzed in comparing conventional algorithms such as HRF smoothing, wavelet denoising, and wavelet MDL. The performance of the proposed method was proven experimentally using the graphical results of the corrected fNIRS signal, CNR that is a performance evaluation index, and the brain activation map.



写作助手,把中式英语变成专业英文


Want to receive new post notification? 有新文章通知我

第五十三期fNIRS Journal Club通知2024/06/22, 10am 李洪

个体在处理不同记忆负荷信息时会表现出一定的行为差异。作为一项新兴指标,瞬时脑信号变异性能够揭示个体内部因任务需求不断变化而进行的神经资源分配,从而为了解大脑如何适应和处理不同复杂程度的信息提供了新的见
Wanling Zhu
8 sec read

第五十二期fNIRS Journal Club视频 周欣博士

Youtube: https://youtu.be/U7gz3NwWcDk优酷:https://v.youku.com/v_show/id_XNjQwMTc0OTYwOA==.html 自闭症特质(A
Wanling Zhu
12 sec read

第五十二期fNIRS Journal Club通知2024/06/01, 10am 周欣博士

自闭症特质(Autistic traits)影响人与人之间的社交互动,但该影响背后的神经机制仍然有待研究。来自香港中文大学的周欣博士将分享团队利用近红外超扫描技术研究不同互动场景下脑同步与自闭特质之间
Wanling Zhu
8 sec read

Leave a Reply

Your email address will not be published. Required fields are marked *