3 ways to check NIRS data quality

1 min read

Before performing any data analysis, we should check the data quality first. Below are 3 ways to do so.

1. Visual check of the time series

The best pattern detector is our eyes and brains! In many cases, if we visually see the data, we know what is wrong. You may use the method and program in this post to plot the time courses of all channels (not just one).

Visual data quality check of NIRS time courses
Visual data quality check of NIRS time courses

In the plot above, all 48 channels are plotted together (the y-axis). We can clearly see two types of noise:

  1. The spikes which occur in most channels after time point 7000. These spikes are caused by head motion.
  2. The high noise level in the “red” channels (channels 39, 34, 31). This is more evident if we plot the variance of each channel (figure below). As we can easily see, the variance of channels 39, 34 and 31 is much higher than other channels.

    Variance vs Channel
    Variance vs Channel

2. Existence of the “heart-beat” band

If the NIRS signal was acquired well, then the heart beating signal should be captured, leaving a bright brand in the frequency ~1Hz in the wavelet transform plot, just like the left plot in the figure below (the band close to period 8). If there is no such band, it does not necessarily mean the signal is trash, but you need to be cautious. To use the wavelet transform toolbox, please download here: https://www.alivelearn.net/?p=1561


NIRS wavelet
NIRS wavelet
Example:
figure;wt(hbo(:,1))

3. Correlation between hbo and hbr

The third way is to check the correlation between hbo and hbr. They are supposed to have negative correlation, at least in young healthy subjects. If not, or if they have perfect negative correlation (-1), then they might contain too much noise. We have a separate article on this method. Please check out https://www.alivelearn.net/?p=1767

Correlation between oxy and deoxy-Hb
Correlation between oxy and deoxy-Hb

Below is the scripts used for the 3 methods.

[hbo,hbr,mark]=readHitachData('SA06_MES_Probe1.csv');

figure;plotTraces(hbr,1:52,mark)

figure;wt(hbo(:,1))

for ii=1:52; wt(hbo(:,ii)); pause; end

[badchannels] = checkDataQuality(hbo,hbr);

Do you have other ways to check data quality? Please let me know!

第三十三期 fNIRS Journal Club 通知 2022/08/27,9am 翟雪彤

Brain AnalyzIR toolbox是一款基于MATLAB开发的高效的fNIRS处理工具箱,由匹兹堡大学Theodore Huppert团队开发(Homer的主要开发者)。来自Theodore
Xu Cui
11 sec read

第三十二期 fNIRS Journal Club 视频 郑一磊

北京航空航天大学的郑一磊博士为大家分享如何利用fNIRS研究人在执行精细运动任务时的脑活动及相关神经机制。 Youtube:https://youtu.be/oCqOXh_-JzE Youku:htt
Xu Cui
11 sec read

第三十二期 fNIRS Journal Club 通知 2022/07/30,10am 郑一磊

智能人机交互系统的研发涉及对人体精细触力觉的理解,如人对任务的控制力度和控制精度。北京航空航天大学的郑一磊博士将为大家分享如何利用fNIRS研究人在执行精细运动任务时的脑活动及相关神经机制,热烈欢迎大
Xu Cui
7 sec read

Leave a Reply

Your email address will not be published. Required fields are marked *