第十期 fNIRS Journal Club 通知 2020/7/25,10am

1 min read

汪待发副教授

北京时间2020年7月25日周六上午10点,北京航空航天大学的汪待发副教授,博士生导师,将为大家讲解他们组去年发表的一篇脑机交互(BCI)的近红外文章。欢迎大家参加并参与讨论。

时间: 北京时间2020年8月29日周六上午10点
地点: https://zoom.com
房间号: 889 8026 7287
密码: 496792

他要讲的文献如下:
Y. Zheng,D. Zhang, L. Wang, Y. Wang, H. Deng, S. Zhang, D. Li, D. Wang, “Resting-State-Based Spatial Filtering for an fNIRS-Based Motor Imagery Brain-Computer Interface,” in IEEE Access, vol. 7, pp. 120603-120615, 2019, doi: 10.1109/ACCESS.2019.2936434

ABSTRACT Functional near-infrared spectroscopy (fNIRS) has attracted much attention in brain-computer
interface (BCI) area due to its advantages of portability, robustness to electrical artifacts, etc. However, in practical applications, fNIRS-based BCI usually needs a labor-intensive and time-consuming training session (calibration procedure) to optimize the user-specifific neural spatial and temporal patterns for further classifification. Recently, studies revealed that neural spatial and temporal patterns extracted from user-specifific resting-state brain signals were closely related to those of his/her task data. In this study, we proposed a resting-state independent component analysis (RSICA) based spatial fifiltering algorithm aiming at extracting individual task-related spatial and temporal brain patterns from the resting-state data. Specififically, independent component analysis (ICA) was applied to extract different independent components (ICs) from resting-state fNIRS data. The ICs with their spatial fifilter weights maximally lateralized over the sensorimotor regions were regarded as most relevant to motor imagery. These spatial fifilters were used to spatially fifilter the multi-channel motor imagery task data for feature extraction. Based on 8-minute resting-state data and a small training dataset (20 trials) from 10 participants, the proposed RSICA algorithm achieved an approximately 7% increase in left vs. right hand motor imagery classifification accuracy, as compared to the conventional common spatial pattern (CSP)-based and shrinkage algorithms (69.8±12.1%, 63.3±10.3% and 63.4±11.8%, respectively). For acquiring a similar level of classifification accuracy (i.e. 70%), the number of training data required could be reduced from 36 trials (CSP) to 22 trials (RSICA). As a relatively small training set is required to obtain a satisfactory performance, training burden is signifificantly reduced by RSICA, which might be useful for developing practical fNIRS-based motor imagery BCIs.

第三十二期 fNIRS Journal Club 通知 2022/07/30,10am 郑一磊

智能人机交互系统的研发涉及对人体精细触力觉的理解,如人对任务的控制力度和控制精度。北京航空航天大学的郑一磊博士将为大家分享如何利用fNIRS研究人在执行精细运动任务时的脑活动及相关神经机制,热烈欢迎大
Xu Cui
7 sec read

第三十一期 fNIRS Journal Club 视频 谢恩慧

华东师范大学李先春教授实验室的谢恩慧为大家讲解他们最近发布的一篇文章。 Youtube: https://youtu.be/ulcIVaZpQLM Youku: https://v.youku.com
Xu Cui
4 sec read

浅谈近红外脑成像英文期刊文章撰写

本文作者是刘宁博士 作者简介:刘宁,塔夫斯大学生物医学工程博士(Tufts University),斯坦福大学脑科学方向科研人员。 Frontiers 杂志客座编辑(Guest Associate E
Xu Cui
11 sec read

Leave a Reply

Your email address will not be published. Required fields are marked *