Calculate phase difference between two general signals (e.g. HbO and Hb) using Hilbert transform

1 min read

In a recent fNIRS journal club (vedio recorded here), Dr. Tong talked about their work on the phase difference between oxy and deoxy Hb, and its relationship with participants’ age. This article is a demo of how to use Hilbert transform to calculate the phase difference between two signals, and whether it’s valid if the signals contain a wide range of frequencies.

Tool: We use MatLab’s hilbert function to calculate the instant phase of a signal. The code can be found in the end of this article.

Case 1: single frequency

Here we tried the simplest case: x and y are single frequency signals with phase difference pi/2, as demonstrated in the figure below. We expect that the calculated phase difference is close to pi/2 or 1.57.

As expected, the phase difference is pi/2! Hilbert transform is doing well in picking up the phase difference! It is noted, however, the calculation is more robust in the middle of the signal.

Case 2: 2 frequencies

What about more complex signals? If x and y both contains two frequencies, each with phase difference pi/2, will Hilbert transform find the correct value?

Yes. It turns out Hilbert transform works for two-frequency signals as well.

Case 3: a lot of frequencies

In this case we generated x and y each with 50 random frequencies. The resulted signals are essentially random:

Again, Hilbert transform found the correct phase difference, pi/2:

People may argue that in such a wide-band case the “phase difference” is not meaningful. However, if the phase difference for each frequency is similar, then it is reasonable to say that the phase difference between the overall signals exists and is that value.

Code (MatLab)

Update: in the original version I shift phase manually (and contains an error!). Now we use unwrap and wrapToPi, suggested by Yafeng Pan, which is easier to use and produce the correct phase shift. Thank Yafeng!

% Demo of Hilbert transform to calculate phase difference between two
% signals
% Xu Cui 2021/6/7

% single frequency
t = [0:0.01:100];
x = sin(t);
y = sin(t+pi/2);
figure; plot(t, x, t, y);
legend('x','y');

xh = hilbert(x);
yh = hilbert(y);

xphase = unwrap(angle(xh));
yphase = unwrap(angle(yh));

figure; plot(t, xphase, t, yphase,'.');

phase_diff = wrapToPi(xphase-yphase);
figure; plot(t, phase_diff, '.');

% 2 frequencies
t = [0:0.01:100];
x = sin(t) + sin(2*t);
y = sin(t+pi/2) + sin(2*t+pi/2);
figure; plot(t, x, t, y);
legend('x','y');

xh = hilbert(x);
yh = hilbert(y);

xphase = unwrap(angle(xh));
yphase = unwrap(angle(yh));

figure; plot(t, xphase, t, yphase,'.');

phase_diff = wrapToPi(xphase-yphase);
figure; plot(t, phase_diff, '.');

% a lot of frequencies
t = [0:0.01:100];
x = zeros(size(t));
y = zeros(size(t));
frequency = rand(1,50)*10;
for ii=1:length(frequency)
    f = frequency(ii);
    x = x + sin(f*t);
    y = y + sin(f*t+pi/2);
end

figure; plot(t, x, t, y);
legend('x','y');

xh = hilbert(x);
yh = hilbert(y);

xphase = unwrap(angle(xh));
yphase = unwrap(angle(yh));

figure; plot(t, xphase, t, yphase,'.');

phase_diff = wrapToPi(xphase-yphase);
figure; plot(t, phase_diff, '.');

第三十三期 fNIRS Journal Club 通知 2022/08/27,9am 翟雪彤

Brain AnalyzIR toolbox是一款基于MATLAB开发的高效的fNIRS处理工具箱,由匹兹堡大学Theodore Huppert团队开发(Homer的主要开发者)。来自Theodore
Xu Cui
11 sec read

第三十二期 fNIRS Journal Club 视频 郑一磊

北京航空航天大学的郑一磊博士为大家分享如何利用fNIRS研究人在执行精细运动任务时的脑活动及相关神经机制。 Youtube:https://youtu.be/oCqOXh_-JzE Youku:htt
Xu Cui
11 sec read

第三十二期 fNIRS Journal Club 通知 2022/07/30,10am 郑一磊

智能人机交互系统的研发涉及对人体精细触力觉的理解,如人对任务的控制力度和控制精度。北京航空航天大学的郑一磊博士将为大家分享如何利用fNIRS研究人在执行精细运动任务时的脑活动及相关神经机制,热烈欢迎大
Xu Cui
7 sec read

Leave a Reply

Your email address will not be published. Required fields are marked *