NIRS hyperscanning data analysis (3) quality check

1 min read

NIRS hyperscanning data analysis (1)
NIRS hyperscanning data analysis (2)
NIRS hyperscanning data analysis (3)
NIRS hyperscanning data analysis (4)

Data quality check

1. Behavior data

To identify behavior abnormalities, we need to plot the behavior data for each individual subject. In this case, we plotted the reaction time vs trial. An example is shown below. It apparent that subject 2 (red) did something strange in trial 20.

behavior data (reaction time)
behavior data (reaction time)

We can also plot the difference of reaction time and the threshold to win. Obviously they only win 1 trial and this is unusual.

Reaction time different and threshold
Reaction time different and threshold

We can also find the mean, min and max of the reaction times. Below is the script:

figure;plot([1:40],subjectData.reaction1,'s-')
hold on;plot([1:40],subjectData.reaction2,'s-r')

figure('color','w');plot([1:40],abs(subjectData.reaction1-subjectData.reaction2),'s-k')
hold on;plot([1:40],subjectData.winthreshold,'s-m')
legend({'reaction time difference','threshold'})
xlabel('trial');ylabel('second')

winNum = sum((subjectData.winthreshold - abs(subjectData.reaction1-subjectData.reaction2))>0);
disp('winning trials = ')
disp(winNum)

disp(length(subjectData.eventwarning))

disp(mean(subjectData.reaction1))
disp(max(subjectData.reaction1))
disp(min(subjectData.reaction1))

disp(mean(subjectData.reaction2))
disp(max(subjectData.reaction2))
disp(min(subjectData.reaction2))

2. NIRS data

The 1st way to identify abnormalities in NIRS data is to plot all channel’s time series in one figure, like the figure below. In the following figure, the time series for each channel is plotted and aligned vertically. It’s easy to identify that the green channel (channel #44) has much more noise than others.

NIRS time series

Another way is to use wavelet transform. If the NIRS signal was acquired well, then the heart beating signal should be captured, leaving a bright brand in the frequency ~1Hz in the wavelet transform plot, just like the left plot in the figure below (the band close to period 8). If there is no such band, it does not necessarily mean the signal is trash, but you need to be cautious.

NIRS wavelet
NIRS wavelet

 

The third way is to check the correlation between hbo and hbr. They are supposed to have negative correlation. If not, or if they have perfect negative correlation (-1), then they might contain too much noise. We have a separate article on this method. Please check out https://www.alivelearn.net/?p=1767

[hbo,hbr,mark]=readHitachData('SA06_MES_Probe1.csv');

figure;plotTraces(hbr,1:52,mark)

figure;wt(hbo(:,1))

for ii=1:52; wt(hbo(:,ii)); pause; end

[badchannels] = checkDataQuality(hbo,hbr);

3. Digitizer data

You want to make sure the measure digitizer data is reasonable by looking at the probe positions in a 3D space.

Digitizer data
Digitizer data
pos_data=readPosFile('0001.pos');
figure;plot3(pos_data(:,1),pos_data(:,2),pos_data(:,3),'o');axis equal;




写作助手,把中式英语变成专业英文


Want to receive new post notification? 有新文章通知我

第六十七期fNIRS Journal Club通知2025/11/1, 10am 肖雅琼教授团队

近年来,越来越多的研究关注自闭症谱系障碍 (ASD)儿童的大脑功能连接异常。但这些异常连接在时间维度上如何变化?又是否与儿童的症状严重程度和认知能力有关?深圳理工大学的肖雅琼教授使用功能性近红外光谱
Wanling Zhu
13 sec read

第六十六期fNIRS Journal Club视频 李洪博士 牛海晶教授

Youtube: https://youtu.be/gkXdJkOalNY 优酷:https://v.youku.com/v_show/id_XNjUwMzg3MzQ2MA==.html 随着老龄化加
Wanling Zhu
13 sec read

fNIRS Frontier Weekly Report (free service)

Subscription Link: https://www.storkapp.me/readingguide/ If you are interested in the fNIRS (Functional Near-Infrared Spectroscopy) field, Stork is now offering a free service: every week, we will collect and summarize the fNIRS-related literature pu
Xu Cui
3 min read

Leave a Reply

Your email address will not be published. Required fields are marked *