Balloon model of hemodynamics

1 min read

Picture:

The vascular bed is treated as an expandable venous compartment (a balloon). If there is a burst of flow, the volume will increase and then return to baseline. That’s where ‘balloon’ comes from.

During steady state (i.e. without activation), the flow into the bed and the flow out the bed are balanced. The in flow is assumed to be pure HbO (oxygenated Hemoglobin). HbO converts to HbR at rate E0. E0 is usually 0.4. Volume, HbO and HbR are all at baseline (assumed to be 1).

When the in flow increases (due to neural activation), the volume increases due to the inbalance of in flow and out flow. The in flow is the driving force and the entire time course of in flow has to be specified as the input. Usually it’s modeled as a trapezoidal function. The out flow is a function of volume.

The oxygen extraction fraction E (the rate at which HbO converts to HbR) is a function of in flow. The more in flow, the less E. At baseline, E is usaually 0.4. If in flow is infinitely big, E will be 0. So during the burst of in flow, E will decrease and then return to baseline. As a result, HbR will decrease initially, then increase and overshoot, finally reachs baseline. HbO dynamics is simple, increase, then decrease.

balloon
balloon

$$\frac{dq}{dt}=\frac{1}{\tau_0}[f_{in}\frac{E}{E_0}-f_{out}\frac{q}{v}]$$
$$\frac{dv}{dt}=\frac{1}{\tau_0}[f_{in}-f_{out}]$$
$$E=1-(1-E_0)^{1/f_{in}}$$
$$f_{out}(v)=\frac{1}{1+\frac{\tau_0}{\tau_v}}(\frac{\tau_0}{\tau_v} v^{1/\alpha}+f_{in})$$

The change of HbO (i.e. oxygenated Hb) is
$$\frac{dp}{dt}=\frac{1}{\tau_0}[f_{in}-f_{out}\frac{p}{v}]$$

which is simply
$$p = v-q$$

I have matlab scripts of balloon model:1. balloon.m 2. balloon_ode.m

Please refer to the original paper:
Buxton et al (1998) Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magnetic resonance in medicine 39 (6) 855-64



写作助手,把中式英语变成专业英文


Want to receive new post notification? 有新文章通知我

第四十七期fNIRS Journal Club通知2023/12/02, 10am 卢宏亮

协作是合作最基本、最底层的行为方式。从自然界中的狼群配合提高狩猎几率,再到人类社会中作战单元协作完成军事任务,协作都发挥着关键作用。然而,目前大部分协作研究依然停留在行为或脑活动观察水平,并未对两者因
Xu Cui
10 sec read

第四十六期fNIRS Journal Club视频 张腾飞

Youtube: https://www.youtube.com/watch?v=L4qc5gCttpc&feature=youtu.be Youku: https://v.youku.com
Xu Cui
14 sec read

第四十六期fNIRS Journal Club通知2023/10/28, 10am 张腾飞

在语言交流的过程中,预测起到了极为关键的作用。以往研究多在单脑情景下对语言预测加工进行检验,但在自然交流过程中,人际之间的预测如何发生呢?北京师范大学认知神经科学与学习国家重点实验室卢春明教授课题组的
Xu Cui
7 sec read

5 Replies to “Balloon model of hemodynamics”

  1. i can not use your code…

    ?? Error using ==> plot
    Bad property value found.
    Object Name : line
    Property Name : ‘Color’.

    Error in ==> plotTraces at 33
    h=plot(time,
    signal(:,channel(ii)),’color’,traceColors(ii,:));

    Error in ==> Balloon_Model at 99
    plotTraces([hbo’-0.5 hbr’]*2, [1 2], stimTime*10,
    ‘rbk’);

    can you help me?
    🙂

  2. Hi Cui, I just discovered your website, really nice.
    Have you ever extended your balloon model script to create the full hemodynamic model (including flow change as function of stimulus input, as used in Dynamic Causal Modelling by Friston&Stephan)?
    I would like to play around with this model but cannot find a matlab script anywhere….

  3. hello Mr Cui

    I run your code , but please see this error :
    Error in Ballon (line 99)
    plotTraces([hbo’-0.5 hbr’]*2, [1 2], stimTime*10, ‘rbk’);

    “plotTraces” is a function that you developed?
    how about “runningCorrelation”?

Leave a Reply

Your email address will not be published. Required fields are marked *