Raspberry Pi for research labs (1)

1 min read

Raspberry Pi for research labs (3)
Raspberry Pi for research labs (2)

Raspberry Pi is a mini and incredibly cheap PC. The size is like a credit card, and the price is $35. See how small it is compared to my hand.

If you connect Pi with a TV (or monitor), a keyboard, a mouse, an internet cable, a SD card, then it becomes a full fledged PC. Pi is ideal for students to learn computer languages and other educational purposes. But many people are very creative in using Pi as a digital photo frame, a media center, a internet radio station etc. Pi’s performance is like a a 300MHz Pentium 2.

Can Pi be used in human behavior and brain imaging research labs?  Our specific goal is to see if we can integrate Pi in our Near Infrared Spectroscopy (NIRS) research. In this first part of experiment, we will see if we can get Pi running at all as a regular computer.

Joe in our lab and I rush into Fry’s to purchase some items needed to run Pi:

  1. Power adapter. Yes, Pi needs power. The adapter is actually identical to my smartphone (android) charger.
  2. SD card and reader. It is like the hard disc of a regular computer and is where data (including OS) is saved.
  3. HDMI to VGA adapter (to connect to a monitor)
  4. We already have a monitor, a USB mouse, and a USB keyboard.
1. let’s format the SD card and put OS in.
I am using a Windows computer so I follow the following instructions.
  1. Download the SD Association’s Formatting Tool from
    https://www.sdcard.org/downloads/formatter_4/eula_windows/
  2. Install and run the Formatting Tool on your machine
  3. Set “FORMAT SIZE ADJUSTMENT” option to “ON” in the “Options” menu
  4. Check that the SD card you inserted matches the one selected by the Tool
  5. Click the “Format” button
Then download NOOBS software from http://downloads.raspberrypi.org/noobs. It is a zip file, extract it and put the contents to the formatted SD card. Note, put the contents inside NOOBS_v1_3 folder to the SD card, but not the NOOBS_v1_3 folder itself.
2. Connect hardware to Pi.
Plug in the SD card to Pi, connect keyboard and mouse, HDMI to VGA adapter (then to monitor), Ethernet cable, and power adapter. As soon as you connect the power adapter, Pi will start to run. We have an option to select which OS to run, and we selected Raspbian, a version of Linux.
A close view of the hardware connected to Pi.
A far view of Pi and the keyboard/mouse, monitor etc. You can see the big juicy raspberry on the screen.
3. Surfing internet
Looks like it’s ready. Now let’s do something real – surfing internet. I opened Midori (a web browser) and can successfully go to any website I like.
Conclusions:
We successfully set up Raspberry Pi as a computer running Linux. The next step is to see if we can use it for research purpose.



写作助手,把中式英语变成专业英文


Want to receive new post notification? 有新文章通知我

第五十七期fNIRS Journal Club通知2024/11/02, 10am 王欣悦博士

肢体语言——例如人际距离、眼神、手势等,如何影响我们的交流,是一个有趣的谜题。它们是优雅而神秘的代码,无本可依、无人知晓,却又无人不懂。来自南京师范大学的王欣悦博士将分享如何通过fNIRS超扫描技术,
Wanling Zhu
16 sec read

第五十六期fNIRS Journal Club视频 李开云副教授

Youtube: https://youtu.be/bKanFfeV5Ao 优酷:https://v.youku.com/v_show/id_XNjQzNDUzMjU4OA==.html 孤独症谱系障
Wanling Zhu
27 sec read

第五十六期fNIRS Journal Club通知2024/09/28, 10am 李开云副教授

孤独症谱系障碍(Autism Spectrum Disorder, ASD)是一种复杂的神经发育障碍,其核心特征包括社交沟通障碍、重复刻板行为和限制性兴趣。济南大学教育与心理科学学院李开云博士借助fN
Wanling Zhu
21 sec read

Leave a Reply

Your email address will not be published. Required fields are marked *